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Abstract

We have developed a general method that solves the task
of creating abstract, interval-based concepts from time-
stamped clinical data. We refer to this method as
knowledge-based temporal-abstraction (KBTA). In this
paper, we focus on the knowledge representation,
acquisition, maintenance, reuse and sharing aspects of
the KBTA method. We describe five problem-solving
mechanisms that solve the five subtasks into which the
KBTA method decomposes its task, and four types of
knowledge necessary for instantiating these mechanisms
in a particular domain. We present an example of
instantiating the KBTA method in the clinical area of
monitoring insulin-dependent—diabetes patients.

1. THE TEMPORAL-ABSTRACTION TASK

Clinical data, such as blood-glucose values, are
typically gathered over time within the scope of one or
more interpretation contexts (e.g., a healthy person, an
insulin-dependent diabetes patient, pre-breakfast periods,
regular insulin therapy). The temporal-abstraction
(TA) task accepts as input time-stamped parameters
(e.g., blood glucose values) and events (e.g., NPH
insulin injections), and returns as output interval-based,
context-specific parameters at the same or at a higher
level of abstraction. The process of summarizing large
amounts of clinical data over time supports a physician
assessing a patient’s condition by creating abstract
concepts (e.g., 2 weeks of LOw pre-breakfast blood
glucose and HIGH pre-supper values) from raw numerical
data (e.g., pre- and post-prandial blood glucose values).

The goal of the TA task is to evaluate and summarize
the state of the patient over a time interval, to identify
various possible problems, to assist in a revision of an
existing therapy plan, or to support a generation of a
new plan. In addition, generating clinically meaningful
interval-based concepts supports the task of explaining a
decision-support system’s plans and actions to different
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users (e.g., a resident physician, a nurse, an experienced
clinical expert). Finally, clinical guidelines can
represent goals and policies as temporal patterns to be
achieved or avoided.

Several issues need to be handled by a method solving
the TA task: (1) the arriving input or the queried output
parameter values might be of different types (e.g.,
numbers, symbols) and abstraction levels (e.g., BLOOD
GLUCOSE LEVEL = 64 mg%; GLUCOSE STATE = LOW);
(2) input data might arrive out of temporal order, and
existing interpretations should be revised accordingly;
(3) several alternate interpretations might need to be
maintained and followed over time; (4) from the
knowledge-representation aspect, acquisition of
necessary knowledge from domain experts should be
facilitated, as well as maintenance of that knowledge.
Reusing the domain-independent abstraction
knowledge for solving the TA task in other domains
should be possible, as well as sharing some of the
domain-specific knowledge with other tasks in the same
domain.

2. THE KNOWLEDGE-BASED
TEMPORAL-ABSTRACTION METHOD

Generalizing our previous work [1,2], we have defined a
domain-independent problem-solving method [3] for
interpreting data in the time-oriented, knowledge-
intensive domains common to clinical applications.
We propose a highly modular approach, with semantics
clearly defined for both the problem-solving method and
the domain-specific knowledge needed by it. The
knowledge-based temporal-abstraction
(KBTA) method decomposes the TA task into five
parallel subtasks (Figure 1): (1) temporal-context
restriction: creation of relevant interpretation
contexts crucial for focusing and limiting the scope of
the inference, (2) vertical temporal inference:
inference from contemporaneous propositions into
higher-level concepts, (3) horizontal temporal
inference: inference from propositions of similar type,
attached to intervals that cover different time periods,
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(4) temporal interpolation: bridging gaps between
disjoint points or intervals, associated with propositions
of similar type, to create longer intervals, and (5)
temporal-pattern matching (creation of intervals
by matching of patterns over disjoint intervals,
associated with propositions of various-types). An
analysis of most existing temporal-reasoning systems
in clinical medicine supports this decomposition [3].

The five subtasks that the KBTA method poses are
solved, respectively, by five lower-level temporal-
abstraction mechanisms (computational modules that
cannot be decomposed further). The mechanisms
include three basic TA mechanisms which we described
previously [1, 2], a mechanism for matching temporal
patterns, and a mechanism for creating relevant temporal
interpretation contexts. Types of output abstractions
include state (e.g., LOW) gradient (e.g., INCREASING)
rate (e.g., FAST) or pattern (e.g., CRESCENDO). The
contemporaneous abstraction mechanism
abstracts one or more parameters and their values,
attached to contemporaneous time points or time
intervals, into a value of a new, abstract parameter. The
temporal inference mechanism infers specific types
of interval-based logical conclusions, given interval-

based propositions, using an extension of Shoham’s
temporal semantic properties [4]. Temporal inference
also determines the domain value of an abstraction
created from two joined abstractions (e.g., DECREASING
and SAME might be concatenated into NONINCREASING).
The temporal interpolation mechanism bridges
gaps between temporal points or intervals, using
domain-specific dynamic-change knowledge about the
parameters involved. In particular, it uses local (forward
and backward, around a time point or interval) and
global (between 2 time points or intervals) truth-
persistence functions to model a belief in the value of
a <parameter, value, context> proposition [3]. Global
persistence functions are represented as maximal-
temporal-gap thresholds that can be bridged. The
temporal-pattern-matching mechanism matches
predefined or online queries for temporal patterns that
are defined in terms of the interval-based abstractions, at
any level of abstraction, created by the other TA
mechanisms. The output is a higher-level parameter of
the pattern abstraction type, such as REBOUND
HYPERGLYCEMIA. The context-forming mechanism
creates temporal interpretation-context intervals
that are a temporal frame of reference for interpretation,
and thus enable a TA mechanism to conclude
abstractions relevant to that and only that context. The
relation between an interpretation context or subcontext
and its generating task, event, abstraction or
supercontext can be any of Allen’s 13 temporal-interval
relations [5]. Thus, contexts generated by events and by
abstractions also enable anticipation of future
complications and interpretation of past findings in the
light of the present interpretation. Creating contexts
requires knowledge about the structure of clinical tasks,
events, and abstractions.

3. DOMAIN-SPECIFIC KNOWLEDGE:
ONTOLOGIES

To be useful for a particular clinical domain, the TA
mechanisms require instantiation with domain-specific
knowledge. This domain-specific knowledge, mostly
declarative, is the only interface between the KBTA
method and the knowledge engineer or the domain
expert. Thus, the development of a TA system
particular to a new domain relies only on creating or
editing a predefined set of knowledge categories. As
shown in Figure 1, we distinguish among four domain
knowledge types used by the TA mechanisms: (1)
structural knowledge (e.g., IS-A and PART-OF
relations in the domain); (2) classification
knowledge (e.g., classification of blood glucose value
ranges into HYPOGLYCEMIA, LOW, NORMAL, HIGH);
(3) temporal semantic knowledge (e.g., the
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relations among propositions attached to intervals and
their subintervals); and (4) temporal dynamic
knowledge (e.g., persistence of the value of a
parameter over time).

The. domain-specific knowledge required by the TA
mechanisms is represented as a parameter-
properties ontology—a theory that represents the
raw and abstract parameters in that domain (e.g., blood
glucose value and state abstractions), their temporal
properties, and the relations among them (e.g., IS-A,
ABSTRACTED-INTO) [2]. The parameter-properties
ontology is used by all the TA mechanisms. The
context-forming mechanism refers also to an ontology
of events such as insulin administration, and an
ontology of interpretation contexts.

4. THE RESUME SYSTEM AND THE
DIABETES DOMAIN

We have developed a software system, RESUME‘, that
implements the temporal-abstraction method [2]. A
simple TA pattern-matching language queries the
internal temporal fact base for particular predefined
temporal patterns or for online interaction with the user.
More complex queries can be answered by a relational
database temporal-query system, Chronus, that is an
extension of the temporal pattern-matching mechanism
[6]. The TA mechanisms do not operate in a fixed
order; they are activated by the currently available data
and the previously derived abstractions. In addition, an
underlying truth-maintenance system updates the
temporal-interval conclusions, since these are by nature
nonmonotonic and therefore defeasible, that is,
their validity depends on primitive data that might be
modified when more past or present data are known.
The control structure implemented in the RESUME
system is specialized to the TA task, and allows several
levels of task-specific control (e.g., desired output types
and abstraction classes, which TA mechanisms to use,
the relevant temporal contexts). It is thus both a data-
and a goal-driven task-specific control.

We applied the RESUME methodology to the area of
treating insulin-dependent diabetes mellitus (DM)
patients. One of us (F.B.K) is a diabetologist, and was
the domain expert for this experiment. We created a
parameter-properties ontology (Figure 2), an event
ontology (Figure 3), and a context ontology (Figure 4).
Acquiring the three initial core ontologies required two
meetings of 2 hours each. Administrations of regular
insulin and of isophane insulin suspension (NPH) are
events, generating different insulin-action interpretation
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contexts that are subcontexts of the DM interpretation
context. Meal events create pre- and post-prandial
contexts—Glucose_state_DM_prebreakfast values [See
Figure 2] can thus be inferred regardless of absolute
time. The Glucose_state abstract parameter has six
values that correspond to the ranges used by the domain
expert (HYPOGLYCEMIA, LOW, NORMAL, HIGH, VERY
HIGH, EXTREMELY HIGH). These values are sensitive to
the context in which they are generated; for instance,
postprandial values allow for a higher range of the
normal value. Glucose_state value propositions in the
same DM context have the semantic property of being
concatenable into propositions holding over longer
intervals [4]; same-day values between different
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Figure 4. Part of the diabetes context ontology.
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preprandial phases can be bridged up to 6 to 8 hours
apart (defined by a truth-persistence interpolation
function). Same-phase parameters such as
Glucuse_state_DM_prebreakfast have longer global
persistence, since they are typically bridged over 24 to
28 hours, using another interpolation function. A
higher-level abstraction of the state of glucose,
Glucose_state_state, maps its six values into three
categories (LOW, NORMAL, HIGH, or L, N, H, for
short), has different semantic properties, and allows
creation of daily pattern abstractions such as LLH (e.g.,
from prebreakfast, prelunch and presupper glucose
values, respectively). Recognition of such patterns can
be highly useful when deciding how to modify a
patient’s insulin regimen; noting their prevalence is an
important step in determining if the pattern is a
common one for the patient. Asserting anywhere in the
temporal fact base an event named DM_planning
initiates the reasoning by generating a retrospective DM
interpretation context for the preceding 2 weeks (this
time window is used by the domain expert in practice
and is modifiable) that enables creation of the DM
domain abstractions.

We applied the RESUME system to electronic data
from insulin-dependent—diabetes patients. The input to
RESUME included both the diabetes ontology (figures
2 through 4) and the patient-specific raw data. A
sample of the results is shown in Figure 5. In this
particular time window, two significant findings are
highlighted: The Glucose_state_state parameter in the
presupper context had the value HIGH for a period of
more than 3 days, and a diurnal pattern of NORMAL or
Low blood glucose levels at morning and lunch, and
HIGH pre-supper glucose levels (e.g., NNH, NLH)
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Figure 5: An example of abstraction by the

RESUME system of data from patient 3. i"""’ =
(open) context interval; |_| = abstracted interval; O =
prebreakfast glucose; ® = prelunch glucose; A =
presupper glucose; GLSS_DM_PsS = Glucose_state_state
abstraction in the DM and pre-supper context;
GLSS_DM_PREPRANDIAL = Glucose_state_state
abstraction in the DM and preprandial context.

appeared at least three times in the same week. The
combined pattern suggests an adjustment of the
intermediate-acting insulin (e.g., NPH). The pattern
can be predefined as an internal pattern-type parameter or
can be noted in response to an external online query for
state abstractions of the Glucose_state parameter.

5. DISCUSSION

The truth-maintenance system in RESUME resembles
Russ’s temporal control structure (TCS) system
[7]. However, TCS leaves all domain-specific temporal
reasoning to the user-created procedures. In contrast, the
RESUME domain-independent (but specific to the TA
task) TA mechanisms perform all of the TA, given the
declarative representation of the domain’s ontology.

The TrenDx system of Haimowitz and Kohane [8]
builds on Kohane’s constraint-satisfaction temporal-
utilities package [9], and defines domain-specific
patterns called trend templates (TTs). TrenDx is
useful in detecting that the data is consistent with one
or more TTs, including TTs of which only a part is
observed. The goal of TrenDx is different from that of
RESUME. TrenDx does not create any intermediate
abstractions, since its goal is not to abstract,
summarize, or answer queries about the data, as it is in
the TA task, but rather to match data efficiently against
a set of predefined patterns. Data can only be accepted

700



at the lowest level; thus, no input of intermediate-level
abstractions is possible. No explicit domain ontology
of parameters and events exists, and a constraint (e.g.,
significant change in a parameter) might be repeated
with the same implicit role in different TTs and even at
different parts of the same TT. Like RESUME, TrenDx
assumes implicitly an ill-defined domain that cannot be
modeled easily numerically, and therefore requires
detection of essentially associative temporal patterns.

Kahn’s TOPAZ system (10) integrates a quantitative
physiological model and a symbolic model for
aggregation of clinically significant intervals. TOPAZ
can associate interpretation methods with an interval
representing a context of interest. RESUME extends
this capability by the context-forming mechanism,
which uses an explicit context ontology to enable
creation of context-specific abstractions and activation
of specific functions, but does not limit generated
interpretation contexts to the temporal extent of the
parent event, allowing any desired relation between the
generating interval and the generated context.
Lehmann’s AIDA system [11] is a diabetes-treatment
decision support prototype system, whose underlying
model attempts to reflect the (patho)physiology of
insulin action and carbohydrate absorption in
quantitative terms. Note that systems such as TOPAZ
and AIDA assume a precise underlying mathematical
model of the domain; most clinical domains defy
complete quantitative modeling.

It might be desirable to detect patterns defined by
events, such as insulin use, and not only by parameters,
such as glucose states. Such patterns might generate
more meaningful interpretation contexts. Such work
has been described by Kahn and his colleagues [12] with
encouraging results for an algorithm combining clinical
and temporal considerations.
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